Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Microbiol Spectr ; 10(1): e0155021, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1685499

ABSTRACT

Mycoplasma pneumoniae is a common pathogen causing respiratory disease in children. We sought to investigate the epidemiology of M. pneumoniae among outpatient children with mild respiratory tract infections (RTIs) during the coronavirus disease 2019 (COVID-19) pandemic. Eligible patients were prospectively enrolled from January 2020 to June 2021. Throat swabs were tested for M. pneumoniae RNA. M. pneumoniae IgM was tested by a colloidal gold assay. Macrolide resistance and the effect of the COVID-19 countermeasures on M. pneumoniae prevalence were assessed. Symptom scores, treatments, and outcomes were evaluated. Eight hundred sixty-two eligible children at 15 centers in China were enrolled. M. pneumoniae was detected in 78 (9.0%) patients. Seasonally, M. pneumoniae peaked in the first spring and dropped dramatically to extremely low levels over time until the next summer. Decreases in COVID-19 prevalence were significantly associated with decreases in M. pneumoniae prevalence (r = 0.76, P = 0.001). The macrolide resistance rate was 7.7%. The overall sensitivity and specificity of the colloidal gold assay used in determining M. pneumoniae infection were 32.1% and 77.9%, respectively. No more benefits for improving the severity of symptoms and outcomes were observed in M. pneumoniae-infected patients treated with a macrolide than in those not treated with a macrolide during follow-up. The prevalences of M. pneumoniae and macrolide resistance in outpatient children with mild RTIs were at low levels in the early stage of the COVID-19 pandemic but may have rebounded recently. The colloidal gold assay for M. pneumoniae IgM may be not appropriate for diagnosis of M. pneumoniae infection. Macrolides should be used with caution among outpatients with mild RTIs. IMPORTANCE This is the first and largest prospective, multicenter, active, population-based surveillance study of the epidemiology of Mycoplasma pneumoniae among outpatient children with mild respiratory tract infections (RTIs) during the COVID-19 pandemic. Nationwide measures like strict face mask wearing and restrictions on population movement implemented to prevent the spread of COVID-19 might also effectively prevent the spread of M. pneumoniae. The prevalence of M. pneumoniae and the proportion of drug-resistant M. pneumoniae isolates in outpatient children with mild RTIs were at low levels in the early stage of the COVID-19 pandemic but may have rebounded recently. The colloidal gold assay for M. pneumoniae IgM may be not appropriate for screening and diagnosis of M. pneumoniae infection. Macrolides should be used with caution among outpatients with mild RTIs.


Subject(s)
Mycoplasma pneumoniae/isolation & purification , Pneumonia, Mycoplasma/microbiology , Respiratory Tract Infections/microbiology , Adolescent , Adult , Anti-Bacterial Agents/therapeutic use , COVID-19/epidemiology , Child , Child, Preschool , China/epidemiology , Drug Resistance, Bacterial , Female , Humans , Infant , Macrolides/therapeutic use , Male , Mycoplasma pneumoniae/genetics , Mycoplasma pneumoniae/physiology , Outpatients/statistics & numerical data , Pneumonia, Mycoplasma/drug therapy , Pneumonia, Mycoplasma/epidemiology , Prospective Studies , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/epidemiology , Young Adult
2.
J Med Virol ; 94(1): 303-309, 2022 01.
Article in English | MEDLINE | ID: covidwho-1544346

ABSTRACT

Emerging evidence shows co-infection with atypical bacteria in coronavirus disease 2019 (COVID-19) patients. Respiratory illness caused by atypical bacteria such as Mycoplasma pneumoniae, Chlamydia pneumoniae, and Legionella pneumophila may show overlapping manifestations and imaging features with COVID-19 causing clinical and laboratory diagnostic issues. We conducted a prospective study to identify co-infections with SARS-CoV-2 and atypical bacteria in an Indian tertiary hospital. From June 2020 to January 2021, a total of 194 patients with laboratory-confirmed COVID-19 were also tested for atypical bacterial pathogens. For diagnosing M. pneumoniae, a real-time polymerase chain reaction (PCR) assay and serology (IgM ELISA) were performed. C. pneumoniae diagnosis was made based on IgM serology. L. pneumophila diagnosis was based on PCR or urinary antigen testing. Clinical and epidemiological features of SARS-CoV-2 and atypical bacteria-positive and -negative patient groups were compared. Of the 194 patients admitted with COVID-19, 17 (8.8%) were also diagnosed with M. pneumoniae (n = 10) or C. pneumoniae infection (n = 7). Confusion, headache, and bilateral infiltrate were found more frequently in the SARS CoV-2 and atypical bacteria co-infection group. Patients in the M. pneumoniae or C. pneumoniae co-infection group were more likely to develop ARDS, required ventilatory support, had a longer hospital length of stay, and higher fatality rate compared to patients with only SARS-CoV-2. Our report highlights co-infection with bacteria causing atypical pneumonia should be considered in patients with SARS-CoV-2 depending on the clinical context. Timely identification of co-existing pathogens can provide pathogen-targeted treatment and prevent fatal outcomes of patients infected with SARS-CoV-2 during the current pandemic.


Subject(s)
Atypical Bacterial Forms/isolation & purification , COVID-19/pathology , Chlamydophila Infections/epidemiology , Coinfection/epidemiology , Legionnaires' Disease/epidemiology , Pneumonia, Mycoplasma/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Chlamydophila pneumoniae/isolation & purification , Female , Humans , India , Legionella pneumophila/isolation & purification , Length of Stay , Male , Middle Aged , Mycoplasma pneumoniae/isolation & purification , Prospective Studies , SARS-CoV-2 , Severity of Illness Index , Young Adult
3.
Virol J ; 18(1): 202, 2021 10 09.
Article in English | MEDLINE | ID: covidwho-1463255

ABSTRACT

BACKGROUND: The effect of SARS-CoV-2 on existing respiratory pathogens in circulation remains uncertain. This study aimed to assess the impact of SARS-CoV-2 on the prevalence of respiratory pathogens among hospitalized children. METHODS: This study enrolled hospitalized children with acute respiratory infections in Shenzhen Children's Hospital from September to December 2019 (before the COVID-19 epidemic) and those from September to December 2020 (during the COVID-19 epidemic). Nasopharyngeal swabs were collected, and respiratory pathogens were detected using multiplex PCR. The absolute case number and detection rates of 11 pathogens were collected and analyzed. RESULTS: A total of 5696 children with respiratory tract infection received multiplex PCR examination for respiratory pathogens: 2298 from September to December 2019 and 3398 from September to December 2020. At least one pathogen was detected in 1850 (80.5%) patients in 2019, and in 2380 (70.0%) patients in 2020; the detection rate in 2020 was significantly lower than that in 2019.The Influenza A (InfA) detection rate was 5.6% in 2019, but 0% in 2020. The detection rates of Mycoplasma pneumoniae, Human adenovirus, and Human rhinovirus also decreased from 20% (460), 8.9% (206), and 41.8% (961) in 2019 to 1.0% (37), 2.1% (77), and 25.6% (873) in 2020, respectively. In contrast, the detection rates of Human respiratory syncytial virus, Human parainfluenza virus, and Human metapneumovirus increased from 6.6% (153), 9.9% (229), and 0.5% (12) in 2019 to 25.6% (873), 15.5% (530), and 7.2% (247) in 2020, respectively (p < 0.0001). CONCLUSIONS: Successful containment of seasonal influenza as a result of COVID-19 control measures will ensure we are better equipped to deal with future outbreaks of both influenza and COVID-19.Caused by virus competition, the detection rates of Human respiratory syncytial virus, Human parainfluenza virus, and Human metapneumovirus increased in Shenzhen,that reminds us we need to take further monitoring and preventive measures in the next epidemic season.


Subject(s)
Antibiosis , COVID-19/epidemiology , Respiratory Tract Diseases/epidemiology , SARS-CoV-2/isolation & purification , Adenoviruses, Human/genetics , Adenoviruses, Human/isolation & purification , Adolescent , COVID-19/virology , Child , Child, Hospitalized , Child, Preschool , China , Enterovirus/genetics , Enterovirus/isolation & purification , Female , Humans , Infant , Influenza A virus/genetics , Influenza A virus/isolation & purification , Male , Metapneumovirus/genetics , Metapneumovirus/isolation & purification , Mycoplasma pneumoniae/genetics , Mycoplasma pneumoniae/isolation & purification , Nasopharynx/microbiology , Nasopharynx/virology , Prevalence , Respiratory Syncytial Viruses/genetics , Respiratory Syncytial Viruses/isolation & purification , Respiratory Tract Diseases/microbiology , Respiratory Tract Diseases/virology , Respirovirus/genetics , Respirovirus/isolation & purification , SARS-CoV-2/genetics
4.
Future Microbiol ; 16(11): 769-776, 2021 07.
Article in English | MEDLINE | ID: covidwho-1308246

ABSTRACT

The current study presents two patients who lived in a rural family with close contact and suffered from rapidly progressive pneumonia. Chest computed tomography images and lymphocytopenia indicated the possibility of COVID-19 infection, but antibody and nucleic acid tests excluded this possibility. Negative results were obtained from corresponding tests for pneumococcal, adenovirus, fungal and legionella infection. Metagenomics analysis and subsequent antibody tests confirmed mycoplasma pneumonia. After treating with moxifloxacin, both patients recovered well and left the hospital. In terms of complicated infectious disease, consideration of atypical pathogens and medical and epidemiological history were important for differential diagnosis of COVID-19; metagenomics analysis was useful to provide direct references for diagnosis.


Subject(s)
Moxifloxacin/therapeutic use , Pneumonia, Mycoplasma/diagnosis , Adolescent , Adult , COVID-19 , DNA, Bacterial , Diagnosis, Differential , Feces/microbiology , Female , Humans , Male , Metagenomics , Mycoplasma pneumoniae/genetics , Mycoplasma pneumoniae/isolation & purification , Pneumonia, Mycoplasma/drug therapy , Sputum/microbiology , Young Adult
5.
J Infect Dev Ctries ; 15(6): 761-765, 2021 06 30.
Article in English | MEDLINE | ID: covidwho-1304764

ABSTRACT

INTRODUCTION: The aim of this study is to determine the coinfections with other respiratory pathogens in SARS-CoV-2 infected children patients in a pediatric unit in Istanbul. METHODOLOGY: This retrospective descriptive study was conducted in a 1000-bedded tertiary education and research hospital in Istanbul. All children hospitalized with the diagnosis of SARS-CoV-2 infection had been investigated for respiratory agents in nasopharyngeal secretions. Laboratory confirmation of SARS-CoV-2 and the other respiratory pathogens were performed using reverse transcriptase-polymerase chain reaction (RT-PCR). RESULTS: A total of 209 hospitalized children with suspected SARS-CoV-2 infection between March 2020-May 2020 were enrolled in this study. Among 209 children, 93 (44.5%) were RT-PCR positive for SARS-CoV-2 infection, and 116 (55.5%) were RT-PCR negative. The most common clinical symptoms in all children with SARS-CoV-2 infection were fever (68.8%) and cough (57.0%). The other clinical symptoms in decreasing rates were headache (10.8%), myalgia (5.4%), sore throat (3.2%), shortness of breath (3.2%), diarrhea (2.2%) and abdominal pain in one child. In 7 (7.5%) patients with SARS-CoV-2 infection, coinfection was detected. Two were with rhinovirus/enterovirus, two were with Coronavirus NL63, one was with adenovirus, and one was with Mycoplasma pneumoniae. In one patient, two additional respiratory agents (rhinovirus/enterovirus and adenovirus) were detected. There was a significantly longer hospital stay in patients with coinfection (p = 0.028). CONCLUSIONS: Although the coinfection rate was low in SARS-CoV-2 infected patients in our study, we found coinfection as a risk factor for length of hospital stay in the coinfected patient group.


Subject(s)
COVID-19/microbiology , COVID-19/virology , Coinfection/microbiology , Coinfection/virology , Viruses/genetics , Adenoviridae/genetics , Adolescent , COVID-19/diagnosis , Child , Child, Preschool , Coinfection/diagnosis , Coinfection/epidemiology , Hospitalization/statistics & numerical data , Humans , Length of Stay/statistics & numerical data , Mycoplasma pneumoniae/genetics , Mycoplasma pneumoniae/isolation & purification , Nasopharynx/microbiology , Nasopharynx/virology , Qualitative Research , Respiratory System/microbiology , Respiratory System/virology , Retrospective Studies , SARS-CoV-2/genetics , Tertiary Care Centers/statistics & numerical data , Turkey/epidemiology , Viruses/classification , Viruses/isolation & purification
6.
Pediatrics ; 147(5)2021 05.
Article in English | MEDLINE | ID: covidwho-1256104

ABSTRACT

A male individual aged 18 years with no significant past medical history presented with fever, headache, dry cough, and chest pain. On clinical examination, he had tachycardia and hypotension needing intravenous fluid resuscitation and inotropic support. A chest radiograph revealed streaky lung opacities, and he was treated with antibiotics for suspected community-acquired pneumonia complicated by septic shock. Significant elevation of cardiac enzymes was noted, and there was a continued need for inotropes to maintain normotension. He also developed intermittent bradycardia, with serial electrocardiograms showing first-degree atrioventricular block, low-voltage QRS complexes, and ST-T wave changes and telemetry demonstrating junctional and ventricular escape rhythm. A complete workup for sepsis and acute myocarditis were performed to find the etiologic agent. Intravenous immunoglobulins were started to treat myocarditis, with eventual clinical improvement. He was eventually diagnosed with an unusual etiology for his illness. He was noted to still have intermittent ventricular escape rhythm on electrocardiograms on follow-up 2 weeks after discharge but continues to remain asymptomatic and in good health.


Subject(s)
Mycoplasma pneumoniae/isolation & purification , Myocarditis/microbiology , Pneumonia, Mycoplasma/diagnosis , Adolescent , Arrhythmias, Cardiac/etiology , Bradycardia/diagnosis , Bradycardia/physiopathology , COVID-19/diagnosis , COVID-19/therapy , Diagnosis, Differential , Fever/etiology , Humans , Hypotension/etiology , Immunoglobulins, Intravenous/therapeutic use , Male , Mycoplasma pneumoniae/immunology , Neutropenia/etiology , Pneumonia, Mycoplasma/complications , Shock, Septic/microbiology , Tachycardia/etiology
7.
PLoS One ; 16(3): e0248750, 2021.
Article in English | MEDLINE | ID: covidwho-1144198

ABSTRACT

BACKGROUND: Severe acute respiratory infection (SARI) results in a tremendous disease burden worldwide. Available research on active surveillance among hospitalized adult patients suffering from SARI in China is limited. This pilot study aimed to identify associated etiologies and describe the demographic, epidemiological and clinical profiles of hospitalized SARI patients aged over 16 years in Jinshan, Shanghai. METHODS: Active surveillance was conducted at 1 sentinel hospital in Jinshan district, Shanghai, from April 2017 to March 2018. Hospitalized SARI patients aged over 16 years old were enrolled, and nasopharyngeal swabs were collected within 24 hours of admission and tested for multiple respiratory viruses (including 18 common viruses) and Mycoplasma pneumoniae with real-time polymerase chain reaction. Demographic, epidemiological and clinical information was obtained from case report forms. RESULTS: In total, 397 SARI patients were enrolled; the median age was 68 years, and 194 (48.9%) patients were male. A total of 278 (70.0%) patients had at least one underlying chronic medical condition. The most frequent symptoms were cough (99.2%) and sputum production (88.4%). The median duration of hospitalization was 10 days. A total of 250 infection patients (63.0%) were positive for at least one pathogen, of whom 198 (49.9%) were positive for a single pathogen and 52 (13.1%) were positive for multiple pathogens. The pathogens identified most frequently were M. pneumoniae (23.9%, 95/397), followed by adenovirus (AdV) (11.6%, 46/397), influenza virus A/H3N2 (Flu A/H3N2) (11.1%, 44/397), human rhinovirus (HRhV) (8.1%, 32/397), influenza virus B/Yamagata (Flu B/Yamagata) (6.3%, 25/397), pandemic influenza virus A/H1N1 (Flu A/pH1N1) (4.0%, 16/397), parainfluenza virus (PIV) type 1 (2.0%, 8/397), human coronavirus (HCoV) type NL63 (2.0%, 8/397), HCoV 229E (1.5%, 6/397), HCoV HKU1 (1.5%, 6/397), PIV 3 (1.5%, 6/397), human metapneumovirus (HMPV) (1.5%, 6/397), PIV 4 (1.3%, 5/397), HCoV OC43 (1.0%, 4/397), influenza virus B/Victoria (Flu B/Victoria) (0.5%, 2/397), respiratory syncytial virus (RSV) type B (0.5%, 2/397), and human bocavirus (HBoV) (0.3%, 1/397). The seasonality of pathogen-confirmed SARI patients had a bimodal distribution, with the first peak in the summer and the second peak in the winter. Statistically significant differences were observed with respect to the rates of dyspnea, radiographically diagnosed pneumonia and the presence of at least one comorbidity in patients who were infected with only M. pneumoniae, AdV, HRhV, Flu A/H3N2, Flu A /pH1N1 or Flu B/Yamagata. The differences in the positivity rates of the above 6 pathogens among the different age groups were nonsignificant. CONCLUSIONS: M. pneumoniae, AdV and Flu A/H3N2 were the main pathogens detected in hospitalized SARI patients aged over 16 years old in Jinshan district, Shanghai. Our findings highlight the importance of sustained multipathogen surveillance among SARI patients in sentinel hospitals, which can provide useful information on SARI etiologies, epidemiology, and clinical characteristics.


Subject(s)
DNA Viruses/isolation & purification , Mycoplasma pneumoniae/isolation & purification , RNA Viruses/isolation & purification , Respiratory Tract Infections/diagnosis , Adolescent , Adult , Aged , Aged, 80 and over , Anti-Bacterial Agents/therapeutic use , China , Cough/etiology , Female , Glucocorticoids/therapeutic use , Hospitals , Humans , Male , Middle Aged , Nasopharynx/microbiology , Nasopharynx/virology , Pilot Projects , Prognosis , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/virology , Young Adult
8.
Zhonghua Er Ke Za Zhi ; 58(8): 635-639, 2020 Aug 02.
Article in Chinese | MEDLINE | ID: covidwho-749115

ABSTRACT

Objective: To investigate the spectrum of pathogenic agents in pediatric patients with acute respiratory infections (ARI) during the outbreak of coronavirus infectious diseases 2019 (COVID-19). Methods: Three groups of children were enrolled into the prospective study during January 20 to February 20, 2020 from Capital Institute of Pediatrics, including children in the exposed group with ARI and epidemiological history associated with COVID-19 from whom both pharyngeal and nasopharyngeal swabs were collected, children in the ARI group without COVID-19 associated epidemiological history and children in the screening group for hospital admission, with neither COVID-19 associated epidemiological history nor ARI. Only nasopharyngeal swabs were collected in the ARI group and screening group. Each group is expected to include at least 30 cases. All specimens were tested for 2019-nCoV nucleic acid by two diagnostic kits from different manufacturers. All nasopharyngeal swabs were tested for multiple respiratory pathogens, whilst the results from the ARI group were compared with that in the correspondence periods of 2019 and 2018 used by t or χ(2) test. Results: A total of 244 children were enrolled into three groups, including 139 males and 105 females, the age was (5±4) years. The test of 2019-nCoV nucleic acid were negative in all children, and high positive rates of pathogens were detected in exposed (69.4%, 25/36) and ARI (55.3%, 73/132) groups, with the highest positive rate for mycoplasma pneumoniae (MP) (19.4%, 7/36 and 17.4%, 23/132, respectively), followed by human metapneumovirus (hMPV) (16.7%, 6/36 and 9.8%, 13/132, respectively). The positive rate (11.8%, 9/76) of pathogens in the screening group was low. In the same period of 2019, the positive rate of pathogens was 83.7% (77/92), with the highest rates for respiratory syncytial virus (RSV) A (29.3%, 27/92), followed by influenza virus (Flu) A (H1N1) (19.6%, 18/92) and adenovirus (ADV) (14.1%, 13/92), which showed significant difference with the positive rates of the three viruses in 2020 (RSV A: χ(2)=27.346, P<0.01; FluA (H1N1): χ(2)=28.083, P<0.01; ADV: χ(2)=7.848, P=0.005) . In 2018, the positive rate of pathogens was 61.0% (50/82), with the highest rate for human bocavirus (HBoV) (13.4%, 11/82) and followed by ADV (11.0%, 9/82), and significant difference was shown in the positive rate of HBoV with that in 2020 (χ(2)=6.776, P=0.009). Conclusions: The infection rate of 2019-nCoV is low among children in Beijing with no family clustering or no close contact, even with epidemiological history. The spectrum of pathogens of ARI in children during the research period is quite different from that in the previous years when the viral infections were dominant. MP is the highest positively detected one among the main pathogens during the outbreak of COVID-19 in Beijing where there is no main outbreak area.


Subject(s)
Disease Outbreaks , Metapneumovirus/isolation & purification , Mycoplasma pneumoniae/isolation & purification , Paramyxoviridae Infections/diagnosis , Respiratory Tract Infections/diagnosis , Beijing/epidemiology , Betacoronavirus , COVID-19 , Child , Child, Preschool , Coronavirus , Coronavirus Infections , Female , Humans , Infant , Influenza A Virus, H1N1 Subtype , Male , Metapneumovirus/pathogenicity , Mycoplasma pneumoniae/pathogenicity , Pandemics , Paramyxoviridae Infections/epidemiology , Pediatrics , Pneumonia, Mycoplasma/diagnosis , Pneumonia, Mycoplasma/epidemiology , Pneumonia, Viral , Prospective Studies , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/virology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL